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Multispectral measurements in the surf zone

Jon Schoonmakera, Joseph Dirbasa, Gary Gilbertb                    

aPAR Government Systems Corp. 1010 Prospect Street, Suite 200, La Jolla CA 92037
bSPAWAR Systems Center, San Diego CA 92152

ABSTRACT

Over the past year an index has been defined which quantifies the surf zone with respect to an electro-optical (EO)
system’s ability to find targets.  The purpose of this index is to both normalize the EO Mine Counter Measure (MCM)
systems performance expectations to the environment in which it is tested and to assess the value of its performance in
an operational environment.  For example, if a given system has a Probability of Detection (PD) requirement of 90% in
a clear water surf zone and is tested in murky waters the surf zone index of the murky water is used to determine what
PD is required in the murky water to yield the 90% PD clear water requirement. The surf zone index is defined in this
paper and expanded from the deterministic contrast transmittance as reported in earlier papers(1) to a probabilistic
approach.  Examples of how to measure the index using readily available low cost spectral imagers such as PAR
Government Systems Corporation’s Mission Adaptable Narrowband Tunable Imaging Spectrometer (MANTIS)
system are given. Finally, the surf zone index usage is discussed and demonstrated.

Keywords: Multispectral, Surf Zone, Remote Sensing, Mine Counter Measure

1. OBJECTIVE

To quantify the impact of surf zone environmental factors such as wave height, sediment load, and water clarity on
electro optical imaging systems in surf zone mine hunting operations.

2. BACKGROUND

Research activities have been on-going to characterize the dynamic surf zone environment with respect to the
performance of passive and active electro-optic (EO) mine hunting systems. In support of these research efforts, PAR
Government Systems Corporation (PGSC) has performed multispectral and digital video data collects over beaches in
Southern California and North Carolina. Two series of airborne collections were conducted over White Beach, located
on Camp Pendleton in Southern California and a third series of airborne collections was conducted at the US Army
Corps of Engineers (USACE) Field Research Facility (FRF) at Duck, NC.

Multispectral data was collected by employing several of the multispectral sensors developed by PGSC under research
and development efforts funded by NAWC and OSD. These multispectral sensors, termed MANTIS (for Mission
Adaptable Narrowband Tunable Imaging Spectrometer), were configured for remote sensing collections and mounted
in a Quicksilver GT500 Ultralite, shown in Figure 1. The MANITS sensors simultaneously image, acquire, and
digitally record four narrowband spectral images at frame rates greater than or equal to 30 Hz. The narrow band filters
used to determine the spectral images are user selectable and selected prior to flight testing. Complementing the
MANTIS sensor suite, a COTS Sony 3-CCD video camera was also flown. Data collected from the Sony camera
allows for situational awareness due to its larger field of view than the MANTIS sensors and also provides a means by
which the performance gains achieved by narrow band imaging can be measured.

All of the data acquired during the collection exercises were collected during daylight hours but at different points in
the tidal cycle. Figure 2 shows an example of the Sony video imagery collected during one collection over White
Beach, Camp Pendleton from an altitude of 250 meters. Figure 2 also shows the series of calibration panels deployed
on the beach during each data collection. The calibration panels, shown in Figure 3 and discussed in Table 1, are
required to convert the collected imagery to radiance units and also to measure and verify system MTF performance.
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Figure 1. Quicksilver GT500 Ultralite aircraft employed
for surf zone imagery data collections

Figure 2. Sample imagery from White Beach, Camp Pendleton

Blue Tarp MW MTF2

LG LB MTF1

SB SG SZ1-4
Figure 3.  Selected targets and calibration panels employed during surf zone multispectral image collections at Duck,

North Carolina and White Beach, Camp Pendleton, Southern California
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Table 1. Detail of beach and surf zone targets and calibration panels
Target Size Reflectivity Purpose

MW 3 m X 3 m square 85 % spectrally flat Radiance to reflectance
conversion of data

MTF1 3 m X 3 m square with
1.75 m diameter center
circle

4 % with 95 % center
spectrally flat

System MTF and registration
control point

MTF2 3 m X 3 m square
with 90 cm diameter
center circle

4 % with 95 % center
spectrally flat

System MTF and registration
control point

LG 5 m X 5 m square 15 % spectrally flat Radiance to reflectance
conversion of data

LB 5 m X 5 m square 4 % spectrally flat Radiance to reflectance
conversion of data

SB 1.2 m X 1.2 m square 4 % spectrally flat Radiance to reflectance
conversion of data

SG 1.2 m X 1.2 m square 15 % spectrally flat Radiance to reflectance
conversion of data

Blue Tarp 2.8 m X 4.6 m Gotta have a blue tarp
SZ1 60 cm diameter, circular 90 % spectrally flat Registration control point and

water clarity
SZ2 60 cm diameter, circular 90 % spectrally flat Water clarity, contrast

transmittance
SZ3 60 cm diameter, circular 90 % spectrally flat Water clarity, contrast

transmittance
SZ4 60 cm diameter, circular 90 % spectrally flat Water clarity, contrast

transmittance

3. SURF ZONE INDEX

The surf zone index (SZI) is discussed in detail in Gilbert (2003) and is summarized in Schoonmaker et al. (2003). The
basis of the index is the concept of contrast and, in general, the SZI is the contrast transmittance of the surf zone from
the depth of a potential target. That is

0/)( CCzY z≡ , (1)

where Y(z) is the SZI for a target at depth z, and Cz is the apparent contrast of the target at depth z as seen by the
sensor and C0 is the inherent contrast of the target against the expected background. In Schoonmaker et al. (2003) the
SZI is measured using the apparent and inherent contrasts of targets deployed in the surf at Duck, NC. In this paper the
analysis is expanded to predict the probability that the SZI exceeds a given critical value (Yc) throughout the surf zone
or P|Y>Yc|. An expectation of the SZI can then yield an expectation of system performance. That is, if a sensor system is
characterized by its minimum detectable contrast (as is possible given the appropriate resolution) then the probability
that the SZI exceeds a given value becomes the fraction of the surf in which the system in question can detect a mine
and can then be used as a probability of detection environmental normalization factor. For example, if a system has a
required PD of 0.9 in an optimum environment (no breaking waves, fairly clear water and thus a high SZI) and is tested
in an environment such as Duck, NC which is not optimum (lots of breaking waves, muddy water and thus low SZI)
then P|Y>Yc| can be used to normalize the required PD to the environment in which the system was tested. As determined
from the data collected at Duck, NC on September 18, 2002, it is likely that P|Y>Yc| may be about 0.2. Thus, in the
September 18 Duck environment, the system would need to achieve a PD of 0.2 times the required 0.9, or a PD of 0.18,
to demonstrate the ability to meet system requirements.
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Gilbert (2003) showed the SZI (or contrast transmittance, Y) for a target at some depth, ZB, could be written as:
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where E* and Es are the water column and surface irradiances, ρb is the bottom reflectivity, E0 is incident irradiance, Ts
is the transmission of the water surface, zB is the depth to the bottom and k and c are water clarity parameters. This can
be simplified and rewritten as:
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R
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where R represents the total reflectivity and the other parameters are defined as above. R, ρb, k and c are functions of
wavelength and hence the SZI is wavelength dependent. k and c, measured in-situ at Duck by both SPAWAR System
Center (SSC), San Diego and the Coastal Systems Station, Panama City, are considered to be Gaussian distributed
random variables with mean and variance given by the in-situ measurements. ZB has both a mean depth component
and a Gaussian random component with a variance given as a function of mean depth. The depth variability has a wind
wave component and a gravity wave component and is normalized to wave staff measurements taken by SSC at Duck,
NC. TS, the transmission of the surface, can be determined by the reflectivity of the surface measured in a spectral
band in which we expect a negligible water column reflectance. Thus, spectral data at 700 nm is used to calculate TS
by TS = 1-R700. The reflectivity, R, can be taken directly from the spectral imagery at each point by converting the
digital number values to reflectivity using the calibration panels placed on the beach and shown in Figure 3. Figure 4
shows an example of reflectance data collected at Duck, NC on September 18, 2002 with the PGSC MANTIS-1
sensor. The composite reflectivity map of the surf zone at Duck in Figure 4 is constructed by registering and
mosaicing several frames of calibrated multispectral image data. The reflectivity data shown in Figure 4 corresponds
to the reflectance along the red line in the image. This reflectivity data is the reflectivity at 550 nm only. The
reflectivity curve clearly identifies the small black calibration panel and illustrates the variation in reflectance from the
beach out past the breakers on the sand bar.

Reflectivity
0.0 0.1 0.3 0.4 0.50.2

Reflectance Image Reflectivity
0.0 0.1 0.3 0.4 0.50.2

Reflectance Image

Figure 4. Reflectance image from calibrated multispectral data of the beach and surf zone at Duck, North Carolina and the
corresponding reflectance values at 550 nm.
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With the measured reflectance data shown in Figure 4 and measured means and variances of surf zone environmental
characteristics, the SZI, Y, in Equation 3 can be determined. Figure 5 shows the same surf zone spectral image as
Figure 4 and the corresponding SZI map as calculated by Equation 3. The dark areas in the SZI map correspond to
regions of foam and, due to high reflectivity, the contrast transmittance is very low resulting in a very low SZI.  From
this image a simple threshold and pixel counting yields the probability that the SZI exceeds some critical SZI, P|Y>Yc|
were Yc, the critical SZI, is used as the threshold.

Reflectance Image

 

BZck
SB eT

R
Y )(21 +−= ρ

Surf Zone Index

Reflectance Image

 

BZck
SB eT

R
Y )(21 +−= ρ

Surf Zone Index

Figure 5. Reflectance image from calibrated multispectral data of the beach and surf zone at Duck, North Carolina and the
corresponding surf zone index (SZI) map.

4. RESULTS

Using the methodology presented in Section 3, the probability that the SZI exceeds a critical SZI can be determined
for various data sets and for various wavelengths. We evaluated four separate multispectral data sets from the Duck,
North Carolina collection exercise, two data sets were collected on September 19, 2002 at which time the water was
relatively clear and two data sets were collected on September 18, 2002 at which time the water was quite murky. The
P|Y>Yc| is plotted in Figure 6 for each day. The depth, Z, in Equation 3, is the depth of the target or the depth of the
bottom, whichever is least. Figure 6 shows curves for the target at depths of 1 and 1.5 meters below the mean surface.
We assume the inherent contrast is that of the target against the bottom rather than that of the target against the
adjacent water column. This assumption is an approximation but is likely very close in surf zone waters where clarity
near the bottom is driven by bottom resuspension. By varying the mean water clarity parameters, k and c, in Equation
3, different coastal environments can be approximated. The approximation would assume the same surface wave
condition but clearer or murkier water. In this way, a curve for waters in Hawaii is approximated in Figure 6.



6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1

Duck 9-19 1.5 m
Duck 9-19 1 m
Duck 9-18 1.5 m
Duck 9-18 1 m
Hawaii 1.5 (approx)

Figure 6.  Probability curves, P|Y>Yc|, for various environments.

On September 19 the water was a bit clearer than on September 18 with mean attenuation coefficient (Kd) very near
1.0 m-1 and the waves were higher as well. The result is that there is an elbow in the September 19 curves at about 0.9
indicating the mean foam fraction in the surf. On the murkier day, September 18, the elbow is much less obvious in the
data. The reason is that the foam fraction has less impact on the SZI when the water is very murky at the target depths
charted in this curve. Figure 7 shows a semilog plot of the histogram of Y for the September 19 data. The bimodal
histogram identifies the region of the surf covered by foam. The integral under the mode on the right of Figure 7
shows that 90% of the surface is not covered by foam which is consistent with the elbow at 90 % in Figure 6 for
September 19.
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Figure 7.  Histogram of Y for September 19 Duck, NC data at target depth = 1 m

There were many flights each day over the surf zone and beach targets. These passes were just a few minutes apart so
the mean conditions remained the same even though an entirely different wave pattern was present. Processing these
many datasets with similar mean conditions revealed that P|Y>Yc| remains relatively constant. When onshore waves are
coming from various directions with slightly different wave periods, as is usually the case, the waves will periodically
interfere constructively or destructively. P|Y>Yc| will thus oscillate with the ‘set’ frequency of the incoming waves. This
behavior in Y will not be observed however until many additional datasets have been processed.

The probability that the SZI exceeds some critical value, Yc, has been computed, as shown above, for various
environmental conditions using remotely acquired data and a computer model. Once the probabilities are determined,
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they can be incorporated into a nomograph which will yield the probability that the surf zone in a given environment
results in a SZI that allows for the detection of a specific target. To construct the nomograph, we need two curves in
addition to the probability that the SZI exceeds a critical value. First, we need information regarding the expected
target and the expected beach and/or background environment. With this information, we can construct a series of
curves showing inherent contrast as a function of background and target. Second, we require information regarding
sensor systems as to what minimal detectable contrast is required to detect a target. This data is independent of
environment and is simply an overall sensor assessment. With this data, inherent contrast can be converted to a
necessary SZI required to detect the target. Finally, with the environmental data presented above, we can determine the
probability that a given environment yields a SZI required to detect that specified targets. These three curves are
combined to produce the nomograph shown in Figure 8.
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Figure 8.  SZI nomograph indicating the probability that the SZI exceeds the requirements to detect a specified
target with a specified sensor system.

The use of the nomograph in Figure 8 starts with the reflectivity of the sand in the water (x axis of the Beach and
Target Info chart). Once a beach reflectivity is selected, the intersection with the curve corresponding to the target
reflectivity determines the target inherent contrast (y axis of both the Beach and Target Info chart and the Sensor Info
chart). The line then intersects with the curve identifying the minimum detectable contrast (MDC) of a specific sensor
to determine the threshold contrast transmittance needed to detect the target of interest (the x axis of both the Sensor
Info chart and the Critical Y chart). Finally, the line intersects with the curve describing the environment to determine
the fraction of the surf in which a mine can be seen, P|Y>Yc|. Figure 8 traces a 8% sand reflectivity and a dark target (5%
reflectance) using both the PGSC MANTIS-3 system (MDC=0.5%) and another representative passive multispectral
sensor (MDC=0.1%) estimates giving surf zone fractions of 0.28 and 0.72 respectively for a target at 1.5 meters deep
in a Duck-like (as seen on September 19, 2002) environment.
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5. CONCLUSIONS

We believe this SZI will be both valuable in describing the environment in which an EO system is to operate and well
as determining how the system has performed relative to expectations and requirements taking into account
environmental variability. The differences between the days in this test in this limited study shows how this concept
can be used to normalize data taken in one environment to that taken in another at the ROC curve performance level.

Our use of random variables for depth and clarity is clearly an approximation. One error comes from the assumption
that the two are independent. In reality the depth minimum just before the break is also a maximum in water clarity. It
would be fairly straight forward to make clarity a function of depth and use a single random variable for water clarity.
It may also be fairly straight forward to build a surface realization consistent with both the wave staff measurements
taken by SPAWAR and the positions of the breaks in the imagery and thus use no random numbers in the calculation
of P|Y>Y0|.

The ability of narrow band video to adequately assess the environmental conditions of the surf zone is important. The
low cost of this technology and the small size and weight means that narrow band video could be deployed on any or
all military platforms for very little cost and without adversely impacting current capabilities. This added information
will support important decisions required to deploy sensor assets in mine hunting application.
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